Jenis dan Bidang-Bidang Matematika: Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, Terapan

5 min read

Bidang-Bidang Matematika

Bidang-Bidang Matematika

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang dan perubahan (yakni aritmetikaaljabargeometri dan analisis). Dibawah ini adalah bidang-bidang matematika yang akan kita bahas.

Selain pokok bahasan tersebut, juga terdapat pembagian bidang-bidang matematika yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Bidang-bidang matematika

Bidang-bidang matematika

Besaran (Bidang-Bidang Matematika)

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat (“semua bilangan”) dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional (“pecahan“). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuaternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan alef, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.

1, 2, 3\,\!-2, -1, 0, 1, 2\,\! -2, \frac{2}{3}, 1.21\,\!-e, \sqrt{2}, 3, \pi\,\!2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Bilangan asliBilangan bulatBilangan rasionalBilangan realBilangan kompleks

Ruang (Bidang-Bidang Matematika)

Pengkajian ruang bermula dengan geometri – khususnya, geometri EuklidesTrigonometri memadukan ruang dan bilangan; dan mencakupi Teorema Pythagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri non-Euklides (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitikgeometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.

Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur Poincaré yang telah lama ada dan teorema empat warna, yang hanya “berhasil” dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.

Illustration to Euclid's proof of the Pythagorean theorem.svgSine cosine plot.svgHyperbolic triangle.svgTorus.pngMandel zoom 07 satellite.jpg
GeometriTrigonometriGeometri diferensialTopologiGeometri fraktal

Perubahan (Bidang-Bidang Matematika)

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyelidikinya. Fungsi-fungsi muncul di sini sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berperubah real dikenal sebagai analisis riil, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.

Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.

Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamikteori kekacauan (chaos mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku deterministik yang masih saja belum terdugakan.

Integral as region under curve.svgVector field.svgAirflow-Obstructed-Duct.pngLimitcycle.jpgLorenz attractor.svgPrinc Argument C1.svg
KalkulusKalkulus vektorPersamaan diferensialSistem dinamikTeori chaosAnalisis kompleks

Dasar dan filsafat Bidang-Bidang Matematika

Untuk memperjelas dasar-dasar matematika, bidang logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk “krisis dasar” mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an. Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.

Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).

Gödel menunjukkan cara mengonstruksi, kumpulan sembarang aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursiteori modelteori pembuktian terpaut dekat dengan ilmu komputer teoretis.

 p \Rightarrow q \,Venn A intersect B.svgCommutative diagram for morphism.svg
Logika matematikaTeori himpunanTeori kategori

Struktur (Bidang-Bidang Matematika)

Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian grupgelangganglapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori Galois.

Elliptic curve simple.svgRubik's cube.svgGroup diagdram D6.svgLattice of the divisibility of 60.svg
Teori bilanganAljabar abstrakTeori grupTeori order

Matematika diskret

Matematika diskret (atau diskrit) adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya – Mesin turing.

Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, oleh sebab itu berkenaan dengan konsep-konsep semisal pemadatan dan entropi.

Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah “P=NP?“, salah satu Masalah Hadiah Milenium.

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}DFAexample.svgCaesar3.svg6n-graf.svg
KombinatorikaTeori komputasiKriptografiTeori graf

Contoh soal matematika diskret #1

Soal: Misalkan A dan B himpunan, çA ç = m, çBç  = n, dan m £ n. Berapa banyak fungsi satu-ke-satu (one-to-one) yang dapat dibuat dari himpunan A ke himpunan B? (Petunjuk: jawab soal ini dengan pendekatan kombinatorial)      

Jawaban: Pada fungsi satu-ke-satu, setiap elemen di himpunan A hanya dipetakan ke satu elemen

di B dan tidak ada dua elemen himpunan A yang memiliki bayangan sama di B.

Misalkan elemen-elemen himpunan A adalah a1, a2, …, am.  Untuk a1 ada n pilihan

bayangan di B, untuk a2 ada n-1 pilihan bayangan di B (karena bayangan untuk a1 tidak

dapat digunakan lagi) , …, untuk ak ada nk + 1  pilihan bayangan di B, …, untuk am

ada nm + 1 pilihan bayangan. Dengan kaidah perkalian, maka akan terdapat sebanyak

n(n – 1)(n – 2) … (nm + 1) fungsi satu-ke-satu dari himpunan A ke himpunan B.

Contoh soal matematika diskret #2

Soal: Berapa banyak bilangan bulat positif empat-angka antara 1000 dan 9999 (termasuk 1000 dan 9999) yang habis dibagi 5 dan 7?

Jawaban:

antara 1 sampai 9999 ada 9999 bilangan

antara 1 sampai 999 ada    999 bilangan

banyaknya bilangan bulat antara 1000 sampai 9999 adalah

[9999/35] – [999/35] = 285 – 28 = 257 buah

Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis dan wilayah lainnya. Salah satu bagian penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)

Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pembulatan atau sumber-sumber galat lain di dalam komputasi.

Unduh / Download Aplikasi HP Pinter Pandai

Respons “Ooo begitu ya…” akan sering terdengar, jika Anda memasang aplikasiHP kita!

Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!

Sumber bacaan: Physics ForumsCollins Dictionary

Pinter Pandai “Bersama-Sama Berbagi Ilmu”
Quiz | Matematika | IPA | Geografi & Sejarah | Info Unik | Lainnya | Business & Marketing

3 Replies to “Jenis dan Bidang-Bidang Matematika: Besaran, Ruang, Perubahan, Struktur, Dasar…”

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *