Limit Fungsi
Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) “dekat” pada L ketika x dekat pada p. Dengan kata lain, f(x) menjadi semakin dekat kepada L ketika x juga mendekat menuju p. Lebih jauh lagi, bila f diterapkan pada tiap masukan yang cukup dekat pada p, hasilnya adalah keluaran yang (secara sembarang) dekat dengan L. Bila masukan yang dekatpada p ternyata dipetakan pada keluaran yang sangat berbeda, fungsi f dikatakan tidak memiliki limit.
Definisi limit dirumuskan secara formal mulai abad ke-19.
Definisi Limit Fungsi
Berikut beberapa definisi limit fungsi yang umum diterima.
Fungsi pada garis bilangan riil atau bilangan real
Bila f : RR terdefinisi pada garis bilangan riil, dan p, LR maka kita menyebut limit f ketika x mendekati p adalah L, yang ditulis sebagai:
jika dan hanya jika untuk setiap ε > 0 terdapat δ > 0 sehingga |x – p|< δ mengimplikasikan bahwa |f (x) – L | < ε . Di sini, baik ε maupun δ merupakan bilangan riil. Perhatikan bahwa nilai limit tidak tergantung pada nilai f (p)
Limit searah
Masukan x dapat mendekati p dari atas (kanan di garis bilangan) atau dari bawah (kiri). Dalam hal ini limit masing-masingnya dapat ditulis sebagai
atau
Bila kedua limit ini sama nilainya dengan L, maka L dapat diacu sebagai limit f(x) pada p . Sebaliknya, bila keduanya tidak bernilai sama dengan L, maka limit f(x) pada p tidak ada.
Definisi formal adalah sebagai berikut. Limit f(x) saat x mendekati p dari atas adalah L bila, untuk setiap ε > 0, terdapat sebuah bilangan δ > 0 sedemikian rupa sehingga |f(x) – L| < ε pada saat 0 < x – p < δ. Limit f(x) saat x mendekati p dari bawah adalah L bila, untuk setiap ε > 0, terdapat bilangan δ > 0 sehingga |f(x) – L| < ε bilamana 0 < p – x < δ.
Bila limitnya tidak ada terdapat osilasi matematis tidak nol.
Limit fungsi pada ketakhinggaan
Bila dua unsur, ketakhinggaan positif dan negatif {-∞, +∞}, ditambahkan pada garis bilangan riil, kita dapat mendefinisikan limit fungsi pada ketakhinggaan. Dua unsur tambahan ini bukanlah bilangan, namun berguna dalam memerikan kelakuan limit pada kalkulus dan analisis.
Bila f(x) adalah fungsi riil, maka limit f saat x mendekati tak hingga adalah L, dilambangkan sebagai:
jika dan hanya jika untuk semua ε > 0 terdapat S > 0 sedemikian rupa sehingga |f (x) – L| < ε bilamana x > S.
Dengan cara yang sama, limit f saat x mendekati tak hingga adalah tak hingga, dilambangkan oleh
jika dan hanya jika bila untuk semua R > 0 terdapat S > sedemikian sehingga f(x) > R bilamana x > S.
Rumus biasa – Limit Fungsi
Rumus Limit Fungsi
Sejarah Limit Fungsi Matematika
Meskipun termasuk secara implisit dalam pengembangan kalkulus pada abad ke-17 dan 18, gagasan modern limit fungsi baru dibahas oleh Bolzano, yang pada 1817, memperkenalkan dasar-dasar teknik epsilon-delta. Namun karyanya tidak diketahui semasa hidupnya.
Cauchy membahas limit dalam karyanya Cours d’analyse (1821) dan tampaknya telah menyatakan intisari gagasan tersebut, tapi tidak secara sistematis. Presentasi yang ketat terhadap khalayak ramai pertama kali diajukan oleh Weirstrass pada dasawarsa 1850-an dan 1860-an[3], dan sejak itu telah menjadi metode baku untuk menerangkan limit.
Notasi tertulis menggunakan singkatan lim dengan anak panah diperkenalkan oleh Hardy dalam bukunya A Course of Pure Mathematics pada tahun 1908.
Contoh Soal dan Jawaban Limit Fungsi
1. Soal: Hitung limit fungsi vektor
Penyelesaian:
Dengan metode yang sama seperti limit fungsi pada umumnya, kita langsung mensubstitusikan ke fungsi vektornya. Jadi,
Jadi, fungsi vektor tersebut akan mendekati saat mendekati 2.
2. Nilai =…
Jawaban:
Karena menuju negatif tak hingga maka, nilai dan
Jadi bentuk limitnya
3. Jika dan maka
Jawaban:
Dengan menggunakan sifat limit dan menjumlahkan kedua persamaan
Subtitusi ke persamaan sebelumnya akan didapat nilai .
Jadi
Jawaban : B
catatan :
4. Soal: Jika maka sama dengan…
Jawaban:
Limit fungsi di ruas kiri ada, padahal nilai penyebut untuk bernilai , sehingga pembilangnya bernilai juga.
Dengan menggunakan dalil L’Hospital
Subtitusi nial ke persamaan diperoleh , sehingga
5. Nilai adalah…
Jawaban:
catatan:
6. Soal:
Jawaban:
Cara Alternatif: :
Jawaban : E
catatan :
Dalil L’Hospital, untuk limit yang berbentuk 0/0 atau
7. Nilai sama dengan…
Jawaban:
Bentuk limit tak tentu . Lakukan sedikit modifikasi:
8. Nilai
Jawaban:
Bacaan Lainnya Yang Dapat Membuat Anda lebih Pintar
- Fungsi Matematika: Linear, Konstan, Identitas – Beserta Soal dan Jawaban
- Faktorial Matematika Beserta Contoh Soal dan Jawaban
- Topologi Matematika – Contoh Soal dan Jawaban Ruang Topologi
- Rumus Matematika Keuangan – Contoh Soal dan Jawaban
- Induksi Matematika Rumus, Pembuktian, Deret, Keterbagian, Pertidaksamaan, Soal, Pembahasan dan Jawaban
- Jenis dan Bidang-Bidang Matematika: Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, Terapan
- Deret Angka Matematika – Jika 0+1=1, 1+1=2, 1+2=3, 2+3=5, Jadi 3+5=?
- Berapa Kecerdasan IQ Anda? Tes IQ Anda Disini
- Bidang-Bidang Matematika: Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, Terapan
- 10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!
- Tulisan Menunjukkan Kepribadian Anda & Bagaimana Cara Anda Menulis?
- Penyakit yang dapat dicegah dengan vaksin – Wajib diketahui
- Top 10 Sungai Terpanjang Di Dunia
- Tempat Wisata Yang Wajib Dikunjungi Di Indonesia Dan Luar Negri
- Kepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?
- Bentuk Kaki Menandakan Karakter Anda – Bentuk Kaki nomer berapa yang Anda miliki?
Unduh / Download Aplikasi HP Pinter Pandai
Respons “Ohh begitu ya…” akan sering terdengar jika Anda memasang applikasi kita!
Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!
Pinter Pandai “Bersama-Sama Berbagi Ilmu”
Quiz | Matematika | IPA | Geografi & Sejarah | Info Unik | Lainnya